|
QHM | 水流模拟软件培训 |
|
班级人数--热线:4008699035 手机:15921673576/13918613812( 微信同号) |
增加互动环节,
保障培训效果,坚持小班授课,每个班级的人数限3到5人,超过限定人数,安排到下一期进行学习。 |
授课地点及时间 |
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【广州分部】:广粮大厦 【西安分部】:协同大厦 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦
开班时间(连续班/晚班/周末班):2025年1月20日................(欢迎您垂询,视教育质量为生命!) |
课时 |
◆资深工程师授课
☆注重质量
☆边讲边练
☆若学员成绩达到合格及以上水平,将获得免费推荐工作的机会
★查看实验设备详情,请点击此处★ |
质量以及保障 |
☆
1、如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
☆ 2、在课程结束之后,授课老师会留给学员手机和E-mail,免费提供半年的课程技术支持,以便保证培训后的继续消化;
☆3、合格的学员可享受免费推荐就业机会。
☆4、合格学员免费颁发相关工程师等资格证书,提升您的职业资质。 |
☆课程大纲☆ |
|
- POLLUTE 是一款快速,准确,全面的污染物运移分析软件,新版本为7.13。 POLLUTE被广泛用于垃圾填埋设计和环境补救领域,它具备快速、准确和全面的污染物运动的分析能力,可将一个 1.5 维度的解决方案运用到对流 - 扩散方程中。与有限元和有限差方程不同的是,POLLUTE不需要时间推进步骤,因此既降低了计算工作量,又避免了替代数值不稳定问题的产生。
-
- 主要特性:
- 1、非线性吸附作用;
- 2、反射性和生物过程的腐烂;
- 3、通过断面的传输;
- 4、被动沉降,相变;
- 5、随时间变化的特性。
- 可以使用程序向导或通过选择许多预先创建的模型中的一个来从头开始创建模型:例如,主衬垫填埋场和次衬垫填埋场。垂直迁移和水平迁移。
-
- POLLUTE V7的一些功能:
- 使用空白模型,向导或快速输入模型可以轻松创建新模型。
- 模型的图形图在创建时显示
- 模型可包含200个图层
- 层可包含1,2或3维裂缝
- 可以为每个层指定扩散系数,分配系数和相变参数
- 顶部边界条件可以是灵通量,恒定浓度或有限质量
- 底部边界条件可以是零通量,恒定浓度,固定流出或无限厚度
- 地下浓度可以在指定的时间计算,或者程序可以自动找到大浓度的时间
- 可以模拟污染物的放射性或生物衰变
- 可以指定在指定深度处的初始浓度分布
- 可以模拟Freundlich和Langmuir非线性吸附
- 源,速度和图层属性可以随时间变化(可以使用源,障碍或流模式中的模型更改)
- 可以指定一个或多个被动水槽来模拟层中的水平速度和污染物的去除
- 蒙特卡罗模拟可用于评估模型参数的不确定性的影响
- 当参数值未准确知晓时,灵敏度分析可用于预测预期的浓度范围
-
-
-
- 英文介绍
- POLLUTEv7 program provides fast, accurate, and comprehensive contaminant migration analysis capabilities. This program implements a one and a half dimensional solution to the advection-dispersion equation. Unlike finite element and finite difference formulations, POLLUTEv7 does not require a time-marching procedure, and thus involves relatively little computational effort while also avoiding the numerical problems of alternate approaches.
-
- With more then fifteen years utilization in industry, POLLUTEv7 is a well tested contaminant migration analysis program which is widely used in landfill design and remediation. Landfill designs that can be considered range from simple systems on a natural clayey aquitard to composite liners, multiple barriers and multiple aquifers.
-
- In addition to advective-dispersive transport, POLLUTEv7 can consider
- · non-linear sorption
- · radioactive and biological decay
- · transport through fractures
- · passive sinks
- · phase changes, and
- · time-varying properties.
-
-
- Feature Comparison
- Feature
- Professional
- Standard
- Wizards and pre-created models
- Yes
- Yes
- Unlimited number of models
- Yes
- Yes
- Up to 200 layers
- Yes
- Yes
- Constant concentration boundary conditions
- Yes
- Yes
- Finite mass boundary condition
- Yes
- Yes
- Fixed outflow boundary condition
- Yes
- Yes
- Passive Sinks
- Yes
- Yes
- Linear sorption
- Yes
- Yes
- Non-linear sorption
- Yes
- No
- Fractures in layers
- Yes
- No
- Radioactive and biological decay
- Yes
- No
- Initial concentration profile
- Yes
- No
- Time-varying properties
- Yes
- No
- Monte Carlo Simulation
- Yes
- Yes
- Sensitivity Analysis
- Yes
- Yes
- POLLUTE Data Entry
- Using the main menu bar at the top of the screen, datasets can be created, edited, and executed. The output from these datasets can then be displayed and printed.
-
- POLLUTE Deposit Data
- Datasets can be created or edited using the Data Menu. A dataset consists of general deposit data, layer data, boundary conditions, and optional special features.
- First, general data is entered about the model, such as:
- · Title of the Dataset
- · Number of Soil Layers (each layer can have different properties)
- · Darcy Velocity through the soil layers
- · Laplace Transform Parameters (defaults are usually sufficient)
-
- POLLUTE Layer Data
- For each layer, the following may be specified:
- · Number of Sublayers
- · Thickness
- · Dry Density
- · Coefficient of Hydrodynamic Dispersion
- · Distribution Coefficient
- · Type of Fractures (if present)
- Any or all of the layers may be fractured. These fractures may be one, two, or three dimensional. In a fractured layer, the program considers advective-dispersive transport along the fractures coupled with diffusion into the matrix on either side of the fracture
-
-
-
- POLLUTE Boundary Conditions
- There are two boundaries for each dataset, one at the top and one at the bottom of the layers. The top boundary is usually the point of contact with the contaminant source (finite mass or constant concentration), and the bottom boundary is usually the point of contact with an aquifer (fixed outflow) or bedrock (zero flux).
-
- Finite Mass Boundary Condition
- The finite mass boundary condition may be used to represent contaminant sources such as landfills. Where the mass of contaminant is finite, the concentration of contaminant at the source will decline as contaminant mass is transported into the layers below or is removed by a leachate collection system.
-
- Fixed Outflow Velocity Boundary Condition
- This boundary condition may be used to represent an aquifer below the layers in the dataset. The concentration in this aquifer will vary with time as mass is transported into the aquifer from the layers above and is then transported away by the horizontal velocity in the base strata.
-
- POLLUTE Special Features
- In addition to the basic data parameters, many special features can also be used in the model. One or more of these special features may be selected from the multiple choice menu.
-
- Radioactive/Biological Decay
- Radioactive or biological decay can be modeled. First-order decay is considered by specifying the half lives for the source, layers, and base aquifer. The layers may have the same half-life, or the half-life can be specified as a function of depth.
-
- Depth Interval Concentration Profile
- To model background concentration in the layers, an initial concentration profile may be used. Using this option, the initial concentration in the layers can be specified as a function of depth. In addition, the flux into the soil and the base can be specified at the start time of the model.
-
- Freundlich and Langmuir Nonlinear Sorption
- Either Freundlich or Langmuir nonlinear sorption may be considered. When nonlinear sorption is used, the program splits the layers into sublayers and uses an iterative technique to determine the equivalent linear distribution coefficient for each sublayer.
-
- Properties Increment Within Groups
- This option is used to vary properties of the model with time. The user may vary the source concentration, contaminant mass, volume of leachate collected, Darcy velocity, dispersivity and aquifer velocity. For example, this option can be used to simulate the progressive failure of the leachate collection system in a landfill. Time is divided into groups. In each group the properties may be constant with time or may increment linearly with time. The concentration in the source at the beginning of each time group may be specified or the concentration at the end of the last group may be used.
-
- Passive Sink
- One or more passive sinks may be used in the model. A passive sink is a layer where there is a horizontal velocity. This will have the effect of removing contaminants. Typically, a passive sink is used to represent secondary leachate collection systems or multiple aquifers.
-
- Monte Carlo Variable Entry
- Monte Carlo simulation may be used to evaluate the effects of uncertainty in the values of some of the model data. Using this approach, the uncertain data values are described using a probability distribution. After numerous simulations, a probability distribution is generated for the peak concentration of the contaminant at any depth.
-
- Primary Liner (Subtitle D) Landfill
- There are options to create and customize predefined models quickly and easily. These models include landfills with primary leachate collection and composite liners (Subtitle D).
-
- Primary and Secondary Liner Landfill
- There are options to create and customize predefined models quickly and easily. These models include landfills with primary leachate collection and composite liners (Subtitle D) and landfills with primary and secondary leachate collection and composite liners (Subtitle C). In these quick landfill entry options, layers such as the geomembrane, clay liner, aquitard, and aquifer can be included or discarded simply by the selecting Yes or No beside the layer name.
-
- Leakage Rate (Subtitle D) Landfill
- The leakage rate through the composite liner may be calculated using the method proposed by Giroud et al., 1992, and Giroud and Bonaparte, 1989. These calculations consider leakage due to permeation and defects in the geomembrane.
-
- Geomembrane Hole Data
- In addition to the type of contact between the geomembrane and the clay liner, the leakage will also depend on the type, size, and frequency of the defects.
-
- Finite Mass Source
- The landfill contaminant source can be either finite mass or constant concentration. If the source type is finite mass, the waste thickness and density, infiltration through the cover, and percentage of mass can be specified for the contaminant.
-
- Primary Clay Liner or GCL
- For each layer present in the model, the parameters may be specified in any units; the program will automatically convert all units to either SI or US. The liner can be either clay or a geosynthetic clay liner.
-
- Aquifer
- If an aquifer is present beneath the landfill, the thickness and porosity of the aquifer can be specified. The program will automatically calculate the minimum outflow velocity in the aquifer. This value or a higher value can be specified.
-
- POLLUTE Model Execution
-
- Calculate Concentrations
- After the dataset has been created, the model can be executed. The concentration of the contaminant can be calculated at any number of specific depths or the maximum concentration can be determined automatically at any selected depth. Unlike other techniques that may take hours or days to prepare and execute models, the finite-layer technique is very quick. It typically takes only minutes to prepare and execute a model making it ideal for examining design alternatives and for sensitivity analysis.
-
- POLLUTE Result Output
- After the model has been executed, the output file can be displayed, graphed, and printed. Graphs can be concentration versus time, concentration versus depth, flux versus time, and color concentration. All of these graphs can also be easily printed on several types of printers. Default values for the graphs are automatically determined. These values can be easily changed to allow complete customization of the graph. For the concentration versus time graph, one or all of the depths may be plotted; likewise for time in the concentration versus depth graph.
-
- Concentration Versus Time
- Concentration with time graphs show the variation in the calculated concentration of the contaminant with time for the depths studied. Using these graphs, the peak concentration at a specific depth can be easily identified. This value is also automatically displayed at the top of the graph.
-
- Concentration Versus Depth
- Concentration versus depth graphs show the change in contaminant concentration with depth, either for a specific time or for all the times that were calculated.
-
- Flux Versus Time
- The total flux into the top of the soil layers and out of the bottom of the soil layers with time can be graphed.
-
- Color Concentration Plot
- The change in concentration with time and depth graph can be used to illustrate the movement of the contaminant plume into deeper depths over time.
-
- Print Options
- Graphs can be printed by pressing 'P' while they are displayed. Many of the features of the printed graph can be controlled such as the size, titles and fonts.
-
- POLLUTE Tools
- Tools are available to aid in creating and checking datasets.
-
- Calculator
- These tools include a calculator that can be used to determine Darcy velocity and contaminant mass.
-
- Help
- Context-sensitive help can be accessed any time by pressing the F1 key. The information displayed contains many cross-references which can be displayed by clicking on the highlighted text.
-
- POLLUTE Preferences
- The display colors, mouse buttons, and program environment can all be adjusted as desired. Many of the program features can be customized such as directories, file extensions, screen display type, and printer type.
-
- Most popular screen types are supported, including Super VGA, VGA, and EGA, or the screen type can be automatically detected.
-
- A large variety of printers are also supported such as Epson 9 and 24 pin, HP LaserJet, HP Pen Plotters, HP Paint Jet, and Postscript. Graphs can also be converted into PCX file format.
|
|
|
|
合作伙伴与授权机构 |
Altera全球合作培训机构
|
诺基亚Symbian公司授权培训中心 |
Atmel公司全球战略合作伙伴
|
微软全球嵌入式培训合作伙伴 |
英国ARM公司授权培训中心 |
ARM工具关键合作单位 |
|
|
|
我们培训过的企业客户评价: |
曙海的andriod 系统与应用培训完全符合了我公司的要求,达到了我公司培训的目的。
特别值得一提的是授课讲师针对我们公司的开发的项目专门提供了一些很好程序的源代码, 基本满足了我们的项目要求。
——上海贝尔,李工
曙海培训DSP2000的老师,上课思路清晰,口齿清楚,由浅入深,重点突出,培训效果是不错的,
达到了我们想要的效果,希望继续合作下去。
——中国电子科技集团技术部主任 马工
曙海的FPGA 培训很好地填补了高校FPGA培训空白,不错。总之,有利于学生的发展,
有利于教师的发展,有利于课程的发展,有利于社会的发展。
——上海电子,冯老师
曙海给我们公司提供的Dsp6000培训,符合我们项目的开发要求,解决了很多困惑我
们很久的问题,与曙海的合作非常愉快。
——公安部第三研究所,项目部负责人李先生
MTK培训-我在网上找了很久,就是找不到。在曙海居然有MTK驱动的培训,老师经验
很丰富,知识面很广。下一个还想培训IPHONE苹果手机。跟他们合作很愉快,老师很有人情味,态度很和蔼。
——台湾双扬科技,研发处经理,杨先生
曙海对我们公司的iPhone培训,实验项目很多,确实学到了东西。受益无穷
啊!特别是对于那种正在开发项目的,确实是物超所值。
——台湾欧泽科技,张工
通过参加Symbian培训,再做Symbian相关的项目感觉更加得心应手了,理
论加实践的授课方式,很有针对性,非常的适合我们。学完之后,很轻松的就完成了我们的项目。
——IBM公司,沈经理
有曙海这样的DSP开发培训单位,是教育行业的财富,听了他们的课,茅塞顿开。
——上海医疗器械高等学校,罗老师
|
我们新培训过的企业客户以及培训的主要内容: |
|
广州航天航空 POWERPC培训
桂林航天工 DSP培训
江苏五维电子科技 达芬奇培训
无锡步进电机自动控制技术 DSP培训
江门市安利电源工程 DSP培训
长江力伟股份 CADENCE 培训
爱普生科技(无锡 ) 数字模拟电路
河南平高 电气 DSP培训
中国航天员科研训练中心 A/D仿真
常州易控汽车电子 WINDOWS驱动培训
南通大学 DSP培训
上海集成电路研发中心 达芬奇培训
北京瑞志合众科技 WINDOWS驱动培训
江苏金智科技股份 FPGA高级培训
中国重工第710研究所 FPGA高级培训
芜湖伯特利汽车安全系统 DSP培训
厦门中智能软件技术 Android培训
上海科慢车辆部件系统EMC培训
中国电子科技集团第五十研究所,软件无线电培训
苏州浩克系统科技 FPGA培训
南京南瑞集团技术 FPGA培训
西安爱生技术集团 FPGA培训,DSP培训
成都熊谷加世电气 DSP培训
福斯赛诺分析仪器(苏州) FPGA培训
南京国电工程 FPGA培训
北京环境特性研究所 达芬奇培训
中国科微系统与信息技术研究所 FPGA高级培训
重庆网视只能流技术开发 达芬奇培训
无锡力芯微电子股份 IC电磁兼容
河北科研究所 FPGA培训
上海微小卫星工程中心 DSP培训
上海申达自动防范系统 FPGA培训
四川长虹佳华信息 MTK培训
公安部第三研究所--FPGA初中高技术开发培训以及DSP达芬奇芯片视频、图像处理技术培训
上海电子信息职业技术--FPGA高级开发技术培训
上海点逸网络科技有限公司--3G手机ANDROID应用和系统开发技术培训
格科微电子有限公司--MTK应用(MMI)和驱动开发技术培训
南昌航空大学--fpga 高级开发技术培训
IBM 公司--3G手机ANDROID系统和应用技术开发培训
上海贝尔--3G手机ANDROID系统和应用技术开发培训
中国双飞--Vxworks 应用和BSP开发技术培训
一汽海马汽车 DSP培训
苏州金属研究院 DSP培训 |
台湾欧泽科技--iPhone开发技术培训
宝康电子--Allegro Candence PCB 仿真和信号完整性技术培训
上海天能电子有限公司--Allegro Candence PCB 仿真和信号完整性技术培训
上海亨通光电科技有限公司--andriod应用和系统移植技术培训
上海智搜文化传播有限公司--Symbian开发培训
先先信息科技有限公司--brew 手机开发技术培训
鼎捷集团--MTK应用(MMI)和驱动开发技术培训
傲然科技--MTK应用(MMI)和驱动开发技术培训
浙江理工大学--Dsp6000图像/视频处理技术培训
台湾双阳科技股份有限公司--MTK应用(MMI)和驱动开发技术培训
滚石移动--MTK应用(MMI)和驱动开发技术培训
冠捷半导体--Linux系统开发技术培训
奥波--CortexM3+uC/OS开发技术培训
迅时通信--WinCE应用与驱动开发技术培训
海鹰医疗电子系统--DSP6000图像处理技术培训
博耀科技--Linux系统开发技术培训
华路时代信息技术--VxWorks BSP开发技术培训
中软国际--Linux系统开发技术培训
龙旗控股集团--MTK应用(MMI)和驱动开发技术培训
研祥智能股份有限公司--MTK应用(MMI)和驱动开发技术培训
罗氏诊断--Linux应用开发技术培训
西东控制集团--DSP2000应用技术及DSP2000在光伏并网发电中的应用与开发
科大讯飞--MTK应用(MMI)和驱动开发技术培训
东北农业大学--IPHONE 苹果应用开发技术培训
中国电子科技集团--Dsp2000系统和应用开发技术培训
中国船舶重工集团--Dsp2000系统开发技术培训
晶方半导体--FPGA初中高技术培训
肯特智能仪器有限公司--FPGA初中高技术培训
哈尔滨大学--IPHONE 苹果应用开发技术培训
昆明电器科学研究所--Dsp2000系统开发技术
奇瑞汽车股份--单片机应用开发技术培训
东华大学--Dsp6000系统开发技术培训
上海理工大学--FPGA高级开发技术培训
同济大学--Dsp6000图像/视频处理技术培训
上海医疗器械高等专科学校--Dsp6000图像/视频处理技术培训
中航工业无线电电子研究所--Vxworks 应用和BSP开发技术培训
北京交通大学--Powerpc开发技术培训
上海水务建设工程有限公司--Alter/Xilinx FPGA应用开发技术培训
恩法半导体科技--Allegro Candence PCB 仿真和信号完整性技术培训
中国计量--3G手机ANDROID应用和系统开发技术培训
冠捷科技--FPGA芯片设计技术培训
芬尼克兹节能设备--FPGA高级技术开发培训
川奇光电--3G手机ANDROID系统和应用技术开发培训
|
|
|
|
|